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The “receiver operating characteristic” (ROC) curve method is a well-recognized metric used
as an objective way to evaluate the ability of a given test to discriminate between two
populations. This facilitates decision-making in a plethora of fields in which a wrong judgment
may have serious consequences including clinical diagnosis, public safety, travel security, and
economic strategies. When virtual screening is used to speed-up the drug discovery process in
pharmaceutical research, taking the right decision upon selecting or discarding a molecule
prior to in vitro evaluation is of paramount importance. Characterizing both the ability of a
virtual screening workflow to select active molecules and the ability to discard inactive ones,
the ROC curve approach is well suited for this critical decision gate. As a case study, the first
virtual screening workflow focused on metabotropic glutamate receptor subtype 4 (mGlu4R)
agonists is reported here. Six compounds out of 38 selected and tested in vitro were shown to
have agonist activity on this target of therapeutic interest.

Introduction
During World War II, a graphical technique developed

from Neyman and Pearson’s decision theory1,2 found its
first practical application. At that time, the so-called
“receiver operating characteristic” (ROC) curve method
helped British radio operators to distinguish between
signals due to random interferences and those featuring
the approach of warplanes targeting London. Since then,
this test evaluation technique has been implemented
in a plethora of other fields in which it soon became a
gold standard. Starting with psychology3,4 and radiol-
ogy,5,6 it is now used in various disciplines such as
medicine,7 acoustics,8 meteorology,9 and criminology10

to assess the accuracy of a given detection device and
subsequently to make better decisions from the provided
measures11 (see ref 12 for a review).

Given its widespread use in many fields, the ROC
curve method is surprisingly underused or underex-
ploited when evaluating in silico selection techniques
in the drug design area. The vast majority of virtual
screening papers employ “enrichment curves” to esti-
mate the ability of the described workflow to retrieve
active compounds out of a set of inactives. Others rely
on some in-house metrics and the minority resort to the
ROC approach. In other words, medicinal and compu-
tational chemists suffer from a lack of standard method
to evaluate the accuracy of a newly designed in silico
“assay”. Therefore, it remains extremely difficult to
compare a new selection technique with others pub-
lished on the same therapeutic target.

The objective of this paper is to introduce the advan-
tages and promote the usage of the ROC plots method
in drug design and more particularly when evaluating
a virtual screening workflow. With this approach, expert
modelers and medicinal chemists can select the most
promising compounds in a more objective way and
concentrate their efforts on the synthesis of molecules
that are more likely to be active against the investigated
target. Indeed, the ROC curve analysis helps answer
two paramount questions: (1) Considering current
knowledge, how good is my model at selecting the
known active molecules and discarding the inactive ones
compared to another model? (2) Where should the score
threshold be set between selected molecules that are
worth being further tested and those that should be
discarded as likely inactives?

Once the theoretical aspect has been depicted, the
ROC curve method will be illustrated by the construc-
tion of a virtual screening workflow focused on metabo-
tropic glutamate receptor subtype 4 (mGlu4R) ago-
nists.13 More precisely, we will show how the ROC curve
method allowed us to tune some docking parameters to
select the most appropriate scoring function for the
retrieval of mGlu4R agonists and to set a selection
threshold according to practical needs. The resulting
workflow was finally used to select compounds from
several commercial vendors. The “virtual hits” were
purchased and tested in vitro. Some results of this
screening campaign are reported here.

Methodology

The scope of virtual screening is to enrich a set of
molecules extracted from a database with active com-
pounds by weeding out those that are likely to be
inactive, prior in vitro assays. Moreover, when inte-

* To whom correspondence should be addressed. Address: Accelrys
SARL, 91893 Orsay Cedex, France. Phone: +33 1 69 35 32 32. Fax:
+33 1 69 41 99 09. E-mail: nth@accelrys.com.
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grated in a drug discovery process, it should be capable
of achieving this within a reasonable time frame. Many
approaches have been developed to fulfill these ex-
pectations.14-16 However, although data availability
may often reduce the choice, selecting the most ap-
propriate method remains a real issue. The ROC curve
method, described in this section, is one possible way
to tackle this problem.

Before getting into details, it is worth noting that the
ROC curve method is applicable only to quantita-
tive approaches for which the test results are numeri-
cal. Fortunately this is the most common case in the
drug design area17 where test results are generally
provided by a similarity metric18 (e.g., Tanimoto in-
dices), a fit on a pharmacophore,19 a QSAR model
prediction,20 or a protein-ligand affinity score.21 In the
case of a quantitative test, different thresholds may
be applied to class the compounds as potentially
active (to be selected) or inactive (to be discarded). In
the present paper, test results will be referred to as
“scores” and, for consistency with the ROC curve theory,
virtual screening workflows will be termed “computer
tests”.

Guidelines
The assessment of a computer test by the ROC curves

method requires four steps as summarized in Table 1.
Step 1. Choice of a Pharmacological Activity

Cutoff. Depending on the pharmacological method that
will be further used to evaluate the selected molecules,
the first stage consists of choosing an appropriate cutoff
between active compounds and those considered as
inactive for the target. For instance, if a high-through-
put screening (HTS) campaign evaluates the activity at
a 10 µM concentration, the activity cutoff should be set
to this value to ensure the usefulness of the preceding
selection process. This preliminary step complies with
the concern about integration of virtual screening and
HTS22 in that the first is adapted to the needs of the
second.

Step 2. Selection of a Sample of Molecules. Once
this decision has been made, step 2 requires the selec-
tion of a sample of molecules (containing both actives
and inactives) of relevance to the target under investi-
gation. The sample used for a ROC curve analysis allows
performance assessment for a given computer test by
analyzing the results obtained with molecules of previ-
ously known activities. For obvious reasons, a sample
is only a tiny part of the entire chemical space and it
should therefore contain the appropriate information in
terms of available structure-activity relationships (SAR).

As its first quality, a good sample reflects the phar-
macology of the target under investigation. Ideally, it

should contain structurally diverse compounds of known
activity in order to cover the chemical space as “thor-
oughly” as possible. The more numerous and diverse the
molecules are, the more objective is the analysis and
the more it reflects current knowledge (i.e., SAR)
regarding a particular target. The performance and
accuracy of such a test will increase as the sample is
iteratively enriched during the hit/lead finding process.
Since a ROC curve analysis evaluates both abilities to
select active molecules and to discard inactive ones (as
defined in step 1), the second prerequisite for a good
sample is that it contains both kinds of molecules,
ideally in equal numbers in order not to favor one class
over the other. Finally, inactive molecules should not
be randomly picked but should rather have a chemical
structure similar to the structures of the chosen actives.
This last rule goes against usual practice, which consists
of seeding some known active compounds in a set of
randomly gathered “druglike” molecules that are treated
as inactives. In a recent publication, Verdonk et al.
pointed out the importance of choosing inactive com-
pounds properly.23 Indeed, it is more difficult for a
computer test to detect an activity “signal” in a set of
molecules when it is disrupted by inactive related
structures emitting a strong interfering “noise”. For
instance, it is more challenging for a similarity metric
to distinguish an active steroid on the estrogen receptor
from another inactive steroid than, for instance, from
acetylsalicylic acid! Abiding by this last rule should
induce some diversity among inactive compounds that
is similar to the diversity of the active molecules.

Step 3. Virtual Screening of the Sample. In step
3, the computer test is applied to the sample to be
evaluated in order to calculate the computer score for
each molecule. As stated before, the test may resort to
many different approaches (similarity, pharmacophore,
etc.). Even a combination of techniques may be consid-
ered.

Step 4. ROC Curve Analysis. Last, in step 4, the
ROC curve method is applied as follows to assess the
performance of the test performed in step 3. Figure 1
illustrates the overall technique for theoretical distribu-
tions of actives and inactive compounds. For a given
selection scoring threshold (panel a), the classification
of all compounds are reported in a “confusion matrix”
(panel b).

Confusion Matrix. Manallack et al. have been using
the concept of confusion matrices in the context of drug
design.24,25 Here, it is used as a tool to comprehend the
ROC curve method better as it allows quick calculation
of sensitivity and specificity from a comparison between
in vitro (active/inactive) and in silico (selected/discarded)
classifications (see Figure 1b).

Table 1. The Four Steps of the ROC Curve Method To Assess the Performance of Virtual Screening Workflows (Termed “Computer
Tests”)

step objective

1. Choice of an activity cutoff according to the
needs of biology

Include a pharmacology criterion to ensure relevance and usefulness of the
computer test

2. Selection of a suitable sample with active and
inactive molecules

Include knowledge of SAR on the target under investigation in the
assessment

3. Virtual screening of the sample of molecules Evaluating compounds of known activities with the designed
computer test

4. ROC curve plotting and subsequent analysis Evaluation of the performance of the test and defining a
selection threshold
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Sensitivity and Specificity. Sensitivity and speci-
ficity are the main characteristic features of any test.
In the drug design context, sensitivity (Se) would be the
percentage of truly active compounds being selected
from the virtual screening workflow: the number of true
positive (TP) results divided by the sum of true positives
and false negatives (FN).

Obviously, this fraction can vary between 0 (all actives
missed) and 1 (when all actives are selected). Therefore,
sensitivity gives information about active molecules that
will be missed: the false negatives. The higher is the
sensitivity, the lower is this number and the better is
the test in selecting actives.

Specificity (Sp), on the other hand, is the percentage
of truly inactive compounds being correctly identified
by the computer test and therefore being discarded, that
is, the number of true negative results (TN) divided by
the sum of true negatives and false positives (FP):

Specificity can also vary between 0 (all inactives are
selected) and 1 (all inactives are discarded), giving
insight on inactive compounds that are wrongly classi-

fied: the false positives. The higher is the specificity,
the lower is this number and the better is the test in
discarding inactive compounds.

Upon modification of the selection threshold from the
lowest to the highest score provided by the test, sensi-
tivity and specificity will evolve in opposite ways and
cover all possible values between 0 and 1. Indeed, when
the threshold is set to the lowest score, all compounds
are selected whether they are truly actives or inactives,
leading to (Se ) 1, Sp ) 0). Contrastingly, when the
threshold is set above the highest score, all molecules
are discarded, leading to (Se ) 0, Sp ) 1). Consequently,
it is not possible to optimize both sensitivity and
specificity at the same time, and a tradeoff is to be
found. The ROC curve analysis allows us to make such
a decision by providing a comprehensive picture of the
ability of a test to make the distinction over all selection
thresholds.7

ROC Curves. Plotting a ROC curve consists of
reporting the evolutions of sensitivity and specificity
together, Se as a function of (1 - Sp). In other words,
the activity “signal” (i.e., % actives) is plotted versus
the detected “noise” (% inactives) at all possible detec-
tion thresholds. A theoretical illustration of such curves
is in Figure 1c. On such a graph, a random classification
of the compounds would be represented by a diagonal
rising from the origin to the upper right corner, whereas
a test capable of detecting the correct signal would have
a ROC plot that curves above that diagonal. For ideal

Figure 1. ROC curves in a nutshell. (a) Theoretical distributions of scores are obtained for both actives (red) and inactives (blue)
after processing the sample by a suitable computer test. For intelligibility of the figure, it was hypothesized that the scores for
both active and inactive compounds had normal (i.e., Gaussian) distributions, although they are unlikely to be so in a usual case.
Generally, these distributions overlap, leading to false predictions (colored area). Upon threshold modification (dashed line),
proportions of such erroneous classifications (reported in a confusion matrix (b)) change dramatically. (c) For all possible score
thresholds, the evolution of the deduced sensitivity (Se) and specificity (Sp) is reported on a ROC graph, Se as a function of 1 -
Sp. Calculating the area under the ROC curve is a practical way to quantify the overall performance of the computer test.

Se )
Nselected actives

Ntotal actives
) TP

TP + FN

Sp )
Ndiscarded inactives

Ntotal inactives
) TN

TN + FP
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distributions, where active compounds are completely
separated from the inactives, the curve skyrockets
vertically to the upper-left corner (Se ) Sp ) 1) and
then joins the upper-right corner horizontally. Hence,
the more a ROC curve bends towards the upper left
corner of the diagram, the more distinct the signal
appears.

In practice, the ROC curve is not as smooth as
displayed on the theoretical illustration (Figure 1c), but
it is rather jagged and “bumpy”. This jagged aspect is
due to the discrete values that sensitivity and specificity
can only take, reflecting the fact that the confusion
matrices are filled with integers. As a matter of fact, as
the threshold changes, inclusion of a true positive will
lead to a vertical line whereas inclusion of a false
positive will produce a horizontal displacement. Less
serrated curves are obtained when the sample contains
more compounds.

From ROC Curves to Absolute Accuracy of
Computer Tests

The ROC curve allows a direct comparison of different
computer tests (for instance, different virtual screening
workflows). This is because the closer a curve comes to
the upper-left corner of the graph, the better the test is
at isolating signal from background noise. Thus, such
a method provides not only a way to fine-tune the
parameters of a given computer test but is also a means
of comparing different virtual screening methods (e.g.,
pharmacophore-based versus docking-based) by plotting
their respective curves.

Since the relative positions of ROC plots give an
insight into the respective accuracies,7 the area under
the curve (AUC) is a practical way of measuring the
overall performance of the tests. If the AUC is close to
0.5 (random test), the test is said to be poor; the highest
possible AUC is 1, corresponding to an ideal case. In
general, the greater the AUC, the more effective the
virtual screening workflow is in discriminating active
from inactive compounds. In terms of probabilities, an
AUC of 0.9 means that a randomly selected active
molecule has a higher score than a randomly selected
inactive 9 times out of 10. However, it does not mean
that a positive result occurs with a probability of 0.9,
nor that a positive result is associated with activity 90%
of the time. Indeed, ROC plots characterize the inherent
quality of the defined test only and by no means are
indicative of the quality of a particular compound.
Accessing the activity probability of a given selected
molecule (positivity predictive value, PPV) is possible
in the rare cases for which the probability of activity
(i.e., the yield of actives, Ya) is known for the screened
database prior to selection. In those cases, the PPV
increases according to both the quality of the computer
test (Se, Sp) and the yield of actives in the given
database. Similarly, the inactivity probability of a given
discarded molecule prior to selection (negative predictive
value, NPV) depends on the test being used and on the
yield of actives. Mathematically, this is illustrated by
Bayes’ theorem:

where

However, as stated before, the aim of virtual screening
being to enrich a set of molecules to be tested in vitro
with active compounds, the number of actives in the
whole database (Nactives screened) is not be known a priori.
Consequently, although it pinpoints the importance of
the quality of the computer test being used, Bayes’
approach is of limited interest for performance assess-
ment of virtual screening workflows. The computer test
quality (measured, for instance, by its ROC curve AUC)
is the only branch we can hang onto.

In practice, however, the AUC is not enough to certify
the quality of a given test as a high AUC value may be
obtained by chance if the sample used is too small. For
example, if one considers the trivial case where the
sample contains only one active and one inactive
compound, there are only two possible classifications:
the first estimates the active better than the inactive
one, exhibiting an AUC of 1, and the second, oppositely,
by ranking compounds in the wrong order would have
an AUC of 0. Hence, in such circumstances, a good AUC
can be easily obtained by sheer chance. In other words,
a good AUC should be sustained by a sample of
reasonable size. One possible route to statistically
validate the computer test is to use Fisher’s randomiza-
tion test that compares the results provided by the test
under evaluation to the results provided by multiple
random distributions.

Another way to facilitate the choice of the most
appropriate method from its ROC curve is to search for
the test with the best specificity for a given sensi-
tivity (or vice versa). For instance, if a prerequisite for
the test is to have a sensitivity of at least 0.95, one
would select the test of highest specificity given that
Se > 0.95.

At first glance, ROC curves have a similar outlook as
the most commonly used graphical method: the enrich-
ment curves (sometimes termed “cumulative recall
curves”). Instead of reporting Se as a function of (1 -
Sp), enrichment curves report the yield of actives (Se
in fact) as a function of the ranking (or alternatively
the percentage of the screened database). Two theoreti-
cal enrichment curves are displayed in Figure 2. Like
ROC curves, enrichment curves lift from the lowest left
corner up to the upper right and above a diagonal line
that represents a random ranking. The further away is
the enrichment curve from the diagonal, the better is
the computer test. Enrichment curves are generally
easier to plot, but they suffer from two major drawbacks.
First of all, the ideal enrichment curve directly depends
on the ratio of actives in the screened set of molecules.
Hence, when the ratio of actives increases, the ideal
enrichment curve gets closer to the curve featuring the
random distribution. As a consequence, enrichment
curves are stuck in a narrower space limited by the ideal
and the random curves, impairing proper comparisons.
The ideal ROC curve, in contrast, is strictly independent

PPV )
(Se)(Ya)

(Se)(Ya) + (1 - Sp)(1 - Ya)

NPV )
Sp(1 - Ya)

(1 - Se)Ya + Sp(1 - Ya)

Ya )
Nactives screened

Ntotal screened

Virtual Screening Workflow Development Journal of Medicinal Chemistry, 2005, Vol. 48, No. 7 2537



of this ratio and always passes through the upper-left
corner of the graph. That explains why ROC curves are
said to evaluate the absolute accuracy of a test, whereas
enrichment curves give only insight on its relative
accuracy for a given activity ratio. Second, enrichment
curves capture explicitly only one of the two aspects
depicted by the ROC plots, that is, sensitivity. Because
any test has a dual feature, i.e., the ability to retrieve
actives (described by Se) and ability to discard inactives
(Sp), one may argue that enrichment curves provide
only half of the information that is necessary to make
good decisions.

Where To Set the Threshold: Making the Right
Decision

Current Methods. There is a plethora of metrics
that have been developed to find an optimal threshold
for quantitative tests.26-31 Among the most commonly
used, the enrichment compares the yield of actives (here
defined as sensitivity) afforded by the in silico prescreen
with the yield of actives obtained from a random cherry
picking. A large majority of these metrics surrounds
both concepts of sensitivity and specificity but without
using them as such. However, like enrichment curves,
many of them suffer from being dependent on the ratio
of actives in the data set.

Last, Neyman and Pearson, who pioneered hypothesis
testing,1 asserted that there is no general rule for
balancing errors; in any given case, the determination
of “how the balance [between wrong and correct clas-
sifications] should be struck, must be left to the inves-
tigator”. In summary, balancing false-positive and false-
negative rates has “nothing to do with statistical theory
but is based instead on context-dependent pragmatic
considerations where informed personal judgment plays
a vital role32”. ROC curves were developed to allow the
incorporation of practical considerations in order to
make appropriate decisions (see below).

Deciding from the ROC Curve. If the computa-
tional test provides a quantitative result (such as a
Tanimoto similarity index or a protein-ligand affinity
score), the ROC curve offers the possibility of choosing

a selection threshold in a very simple way. Indeed, as
shown before, any given point on the curve, (1 - Sp,
Se), corresponds to a given threshold and vice versa.
Therefore, choosing a point on the ROC curve corre-
sponds to choosing a threshold value.

When practical considerations are taken into account,
two different attitudes may be adopted depending on
the costs and benefits of an error by excess (selecting
an inactive for in vitro assays) versus the cost of an error
by default (losing an active compound). There are many
advantages in adopting a conservative attitude (privi-
leging specificity over sensitivity by requiring a high
score) by choosing a point on the lowest left corner of
the ROC curve. First of all, a high specificity allows the
majority of inactives to be pushed aside, leading to a
higher yield of actives (i.e., improves the enrichment).
This particular point has been claimed to be the main
advantage of in silico selection of compounds prior to
HTS. Besides, the number of molecules to be synthe-
sized and tested in vitro is reduced compared to the
popular strategy adopted in the 1990s that used to
advise screening any available compound. In the case
where cost and time are the main issues, for example,
in a small company or in highly competitive domains of
research, privileging specificity may be advisable. In
other words, a conservative attitude (high specificity)
is faster, cheaper, motivating, and apparently, the most
efficient way to accelerate drug discovery. However,
attention should be drawn to the dangers of a drift
toward excessive conservatism.

Indeed, the alternative (i.e., choosing a point in the
upper-left part of the curve), and more liberal strategy
preferring sensitivity to specificity also shows some
significant advantages. First of all, such an attitude is
a way to account for the uncertainty of models whereas
tests of high specificity may lend too much credit to the
adopted approximations. Second, when sensitivity is
increased, fewer actives are lost, including compounds
with more diverse structures. This is not surprising
because a model is derived from the known SAR,
explaining that related structures are more easily
detected than novel chemotypes. This is particularly
obvious if the model uses similarity-searching methods.
Consequently, when innovation should be privileged, for
instance, while seeking scaffold “hopping” during the
hit/lead finding stage of the drug discovery process or
when patent deposition is the main concern, sensitivity
is to be favored over specificity. The drawback here is
that excessive liberalism would lead to the acceptance
of most (if not all) compounds in the selection, therefore
effectively bypassing the virtual screening step in the
drug discovery. Naturally, one wise strategy would be
to find a compromise solution between these extremes.

Many strategies can be implemented with the ROC
curve method, and this theoretical part constitutes only
an introduction to this approach. In particular, combi-
nations of test results (with AND or OR association
rules) are common practice in clinical diagnosis in order
to improve both sensitivity and specificity values.7 Here,
we will simply compare the results obtained with the
same technique (namely, docking-scoring) with different
combinations of parameters.

Figure 2. Theoretical enrichment curves of the same test for
two different ratios of actives. This graph illustrates the
difficulty of comparing test performances by relying on enrich-
ment curves because they directly depend on the ratio of
actives in the screened database.
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Results and Discussion

Application to mGlu4R Agonists. Metabotropic
glutamate receptors (mGluR) are of particular interest
in medicinal chemistry because they are believed to be
suitable targets for treating a large variety of brain
disorders33,34 such as convulsions,35 pain,36,37 drug ad-
diction,38 anxiety disorders,39 and several neurodegen-
erative diseases.40 Characterized by a large extracellular
amino-terminal domain, mGluRs constitute the family
3 (or C) of G-protein-coupled receptors together with
GABAB, Ca2+ sensor, taste, olfactory, and pheromone
receptors.41 This extracellular domain constitutes the
ligand binding module (LBM), the crystal structure of
which has been recently resolved.42 As earlier hypoth-
esized,43 the LBM adopts a bilobate fold separated by a
flexible hinge region. This allows the agonist to be
trapped and subsequently trigger the receptor’s activa-
tion.44

On the basis of sequence similarity, transduction
mechanism, and pharmacological profile, the eight
known subtypes of mGluRs are classified into three
groups. Group III contains subtypes 4 and 6-8. Mainly
located presynaptically, where they act as autorecep-
tors,45 group III mGluRs decrease adenylyl cyclase
activity via a Gi/o protein and are specifically activated
by L-AP4 (see structure 2 in Figure 3). Among this
group, mGlu4R is thought to be a possible new target
for Parkinson’s disease,40 but the lack of a highly specific
agonist has seriously impaired target validation studies.
Furthermore, despite many chemical variations around
the structure of glutamate (see Figure 3), L-AP4 2
remains the strongest mGlu4R agonist with an EC50 of

only 0.32 µM. New chemotypes of higher potency and
specificity are to be found, but the poor diversity and
the shortage of available SAR have made their research
particularly tricky.

To identify new leads for subtype 4, the ROC curve
method was applied to fine-tune parameters of a virtual
high-throughput screening (vHTS) workflow so that an
“activity signal” could be detected among the small
number of molecules of known mGluR activity. The
resulting vHTS workflow was then applied to select
molecules available from five different vendors (more
than 720 000 available compounds). The selected mol-
ecules were finally purchased and tested in vitro using
a calcium imaging HTS approach at a concentration of
100 µM. Since the most potent mGlu4R agonists have
EC50 values in the low micromolar range, this concen-
tration was estimated to be a good tradeoff between poor
agonist activities and activities of hits that could pos-
sibly be optimized. As a matter of fact, an EC50 of 100
µM barely represents 1 log of activity above L-glutamate
1.

Sample Building for Computer Test Assessment.
In the case of mGlu4R, the small number of agonists of
known activity dictates the construction of the sample.
In fact, the vast majority of these molecules, reported
in different papers (see refs 13 and 46 and references
therein), were incorporated in the sample. Since our
HTS campaign was conducted at a 100 µm concentra-
tion, the limit between active and inactive compounds
was set to this value. In other words, molecules with
known EC50 below 100 µM are considered as actives
whereas molecules with known EC50 above 100 µM are
taken as inactives.

Figure 3. Sample of 21 molecules representing current knowledge about SAR data on mGlu4R. For the purpose of the present
study (ROC curve analysis), agonists with EC50 below 100 µM are considered actives and those above 100 µM are taken as inactives.
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Hence, a sample of 21 molecules was derived on the
basis of both activity cutoff and pharmacology (refer to
Figure 3 for structures and activity classes). Therefore,
out of 21 molecules, 10 are regarded as actives and the
remaining molecules are regarded as inactives. It is
worth noting that all molecules are R-amino acids with
various side chains ended by an H-bond acceptor moiety
(most often an acidic function). In particular, the inac-
tive molecules were chosen for their structural similar-
ity to active molecules as recommended in the above
guidelines. That is, instead of choosing compounds at
random to build-up the inactive class, we purposely
chose compounds that are more likely to produce a
strong interfering “noise” for the computer test we wish
to assess. As a matter of fact, the inactive molecules on
subtype 4 are known agonists of other mGluRs belong-
ing to the other groups of mGluRs (i.e., group I or group
II). Three structural groups were identified among both
active and inactive compounds: small and rather flex-
ible molecules such as L-glutamate 1, L-AP4 2, or,
among inactives, (S)-4-methyleneglutamate ((S)-4CH2-
Glu 11); bulky and semirigid structures such as ACPT-I
6 and (1S,3R)-ACPD 16; and phenylglycines (e.g., (S)-
PPG 9, (S)-3,4-DCPG 10, 3,5-DHPG 20), which are
characterized by a slightly longer distance between the
R-amino acid moiety and the distal hydrogen-acceptor
function.

Computer Test Development. Structural Issues.
To tackle the docking in a reasonable time frame, most
high-throughput docking programs consider only the
flexibility of the ligands, whereas the protein targets
are maintained rigid throughout the calculation. In such
a simplified approach, the possible induced fit between
ligand and protein is therefore not considered, albeit
many cases have been reported to support its impor-
tance.47 The LigandFit program is not an exception to
the rule. Here, to take protein flexibility implicitly into
account, all compounds were docked in four different
and relevant conformations of the receptor (“ensemble
docking”). To do so, a comparative model of mGlu4R
LBM was refined by molecular dynamic (MD) in the
presence of four mGlu4 receptor agonists representing
the three structural classes described above: L-glutamate
1 (endogenous ligand) and L-AP4 2 (the most potent
mGlu4R agonist) for the first class, ACPT-I 6 for the
second, and (S)-PPG 9 for the third (phenylglycines)
according to the method published by Bertrand et al.48

One practical way to compare those agonists in their
MD-refined conformation is to calculate their three
principal moments of inertia (PMI; see Table 2). Without
getting into many details, it is clear that L-glutamate 1
and L-AP4 2 are similar in terms of both size (as
reported by the norms of the PMIs) and shape (as
exhibited by the relative parts of inertia). Although (S)-
PPG 9 is characterized by a similar shape, it is longer

than the class 1 agonists, with the largest PMI almost
1 Å larger than for L-glutamate 1 and L-AP4 2. In
contrast, the largest PMI for ACPT-I 6 is similar to
those of class 1 agonists but this compound is notably
bulkier along the other axes of inertia. With regard to
the receptor model, these ligands induced some confor-
mational modifications mainly in the part of the binding
pocket that interacts with the glutamate side chain. It
comprises several basic and highly flexible residues
(Lys74, Arg78, Lys317, and Lys405), which orient their
side chains according to each agonist’s structure. A
figure representing the binding site of L-AP4 2 in
mGlu4R is available as Supporting Information.

For our vHTS workflow, the four MD-docked agonists
were considered as structural references to estimate the
quality of the LigandFit docked molecules. In particular,
the position of their primary ammonium moiety seems
to be highly conserved upon agonist binding to any
mGluR LBM thanks to three H-bond interactions
(Ala180, Thr182, Asp312 in subtype 4), one ionic bridge
(Asp312), and a cation-π interaction (Tyr230). This
assertion is strongly supported by site-directed mu-
tagenesis studies that demonstrate the paramount
importance of interaction with Thr182 (dramatic loss
of activity in the T182A) versus the interaction with the
distal binding pocket49 (with the exception of the R78A
mutant). In a more recent study,44 it was shown that
the ionic interaction with Asp309 in subtype 8 (corre-
sponding to Asp312 in subtype 4) strongly stabilizes the
closed-activated form of the LBM (EC50 for L-AP4 at 0.2
µM for the wild-type versus 129 µM for the D309A
mutant).

High-Throughput Docking. The 21 molecules of
the sample were processed through the workflow sum-
marized in Figure 4. LigandFit is a shape-based docking
engine with a subsequent force-field-driven positioning
improvement designed for vHTS.50 The first step of the
calculation defines a binding volume characterized by
its three PMIs and therefore by its shape. Since we had
four MD-refined conformations of the LBM (termed CGlu,
CAP4, CACPT, and CPPG), four site models were derived
from LigandFit’s cavity detection algorithm. For each
ligand, LigandFit generates various conformations using
a Monte Carlo search method restricted to the torsion
space. Once aligned within the site according to the
principal moments of inertia, conformations that match
the shape of the site model are refined by a rigid-body
minimization. Resulting poses are ranked according to
either a force-field-based (DREIDING51) or an empirical-
based (PLP152) docking function termed DockScore. This
docking process allows us to generate reasonable local
minima for each ligand, assuming that the bioactive
orientation will be among the top 20 poses ranked by
the DockScore.

Docking Results Refinement. After the poses are
docked with LigandFit in the ensemble of conformations
(CGlu, CAP4, CACPT, and CPPG), the poses are relaxed with
an in situ minimization protocol (flexible ligand in a
rigid protein model) with the DREIDING51 force field.
Since all molecules exhibit a primary ammonium sub-
structure, poses having their ammonium moiety further
than a given distance from the ammonium of the MD-
docked reference compounds are rejected. Thanks to this
structural filter, only high-quality poses are submitted

Table 2. Norms of the Three Principal Moments of Inertia
(PMI) (in Å) for the Four Reference Agonists Calculated
According to Their Docked Conformation by Molecular
Dynamics

class agonist PMI (relative contribution to inertia)

1 L-Glu 1.89 (53%), 0.85 (24%), 0.80 (23%)
1 L-AP4 1.69 (52%), 0.87 (27%), 0.69 (21%)
2 ACPT-I 1.87 (43%), 1.37 (32%), 1.05 (25%)
3 (S)-PPG 2.73 (59%), 1.13 (24%), 0.73 (16%)
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to the final scoring and prioritizing step. This is
consistent with SAR data as discussed earlier.

Scoring. The remaining poses docked in the four
receptor conformations are scored by all scoring func-
tions available in the Ligand Scoring module of Cerius2

(Accelrys Inc.). Indeed there is no clear evidence yet that
one scoring function performs better than the other for
this family of protein. We therefore envisage force-field-
based, knowledge-based, and empirical-based scoring
functions.21 Finally, all poses from the four sites are
collected and only the best pose (according to the
considered scoring function) for each molecule is re-
tained to plot the corresponding ROC curve, regardless
of the receptor conformation.

Our goal being to optimize the performance (as
assessed by the ROC curve method) of our computer
test, various combinations of parameters are envisaged
(refer to Table 3).

ROC Curve Method. Application with Different
Virtual Screening Parameters. To fine-tune (1) the
number of receptor conformations, (2) the type of
docking function, (3) the number of in situ minimization
steps after docking, (4) the distance tolerance (Dmax) for
the structural filter and (5) to choose the appropriate
scoring function, the ROC curves method was applied
for various combinations of screening parameters (see
Table 3). The objective at this stage is to maximize the
AUC of the computer test.

A systematic approach for evaluating each combina-
tion being unreasonable from a time perspective (560
combinations in total according to Table 3), we evalu-
ated each parameter in turn, keeping the others con-

stant, and operated in an “evolutionary” way. That is,
if one parameter modification improves the AUC, it is
kept for the following parameter to be assessed. Al-
though this method cannot guarantee that the best
combination of parameters is obtained, it allows a
satisfactory combination to be reached for our screening
purpose.

First of all, the “ensemble docking” approach proved
to be appropriate for our case because none of the four
LBM conformations were capable, on its own, of recog-
nizing all known agonists (data not shown) and there-
fore of impairing the plot of ROC curves. For instance,
LigandFit cannot fit (S)-3,4-DCPG 10 in CACPT and
ACPT-I 6 cannot be docked in CPPG. Simple geometric
constraints can explain these observations: the site
model of CACPT is too short for phenylglycines, and the
site model of CPPG is not bulky enough to accept
cyclopentyl derivatives. We therefore kept the docking
results for all four conformations. Such an improvement
with the ensemble docking approach has been reported
in other papers53,54 and is consistent with the current
paradigm that describes proteins in a preexisting en-
semble of conformational states to which ligands can
bind with different affinities.55 This is line, as well, with
a recent hypothesis regarding the activation process of
mGluRs where the agonist displaces the dynamic equi-
librium toward the closed-activated form42,44 and, during
that process, maximizes its interactions with the pro-
tein. This is the reason why we consider only closed
forms of the LBD for our vHTS experiments.

Figure 5 reports two sets of ROC curves that allowed
us to tune the subsequent parameters. The first obser-
vation to be made from this figure is that in most cases
the ROC curves remain above the diagonal represent-
ing a random distribution. Although it is known that
scoring functions are not always capable of identifying
the best agonist for a given target, this result tends to
support the fact that they are at least capable of
discriminating active agonists from inactive compounds;
this is actually what is needed for vHTS purposes. If
we compare the case where 250 iterations of in situ
minimization is added to the workflow (Figure 5), we
may notice that the AUC results do not vary signifi-
cantly except those for LigScore2, which, as a force-field-

Figure 4. Diagram illustrating the overall workflow described in this paper. Pathway A (above, thin arrows) depicts the workflow
implemented to tune the different parameters according to the ROC curve method. Pathway B (below, thick arrows) shows the
way used by molecules from commercial databases once the parameters were set with the ROC curve approach. Hence, these
molecules are preprocessed prior to docking. Only compounds having a molecular weight (MW) below 500 g/mol (filter 1) and
exhibiting a ionizable primary ammonium (filter 2) are allowed to proceed through the next step. Given that the sample of 21
molecules used for ROC curve analysis already satisfies these prerequisites, it is directly input into the ensemble docking step.

Table 3. Envisaged Values for Each of the Five Parameters
Considered for the Optimization of the Computer Test

parameter envisaged values

docking strategy one protein conformation
vs ensemble

docking function (DockScore) DREIDING or PLP1 derived

number of in situ
minimization steps

0, 250, 500, 1000

ammonium displacement
(Dmax), Å

0. 5, 1, 1.5, 2, above 2

scoring functions LigScore1-2, PLP1-2, Jain,
PMF, Ludi2
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based scoring function, is clearly favored by this force-
field-driven step.

The combination of parameters that produced the
largest AUC with our method is the following one: (1)
PLP1 was used as a docking function, including the
ligand’s internal energies. (2) 250 steps of in situ
minimization were applied to the 20 best poses. (3) A
tolerance of Dmax ) 0.5 Å between the poses’ ammonium
and the reference was applied. (4) LigScore2 was used
as a scoring function. Regarding the docking function,
PLP1, somewhat surprisingly, provided better AUC
results than the DREIDING based DockScore. However,
this may be explained by the fact that the first, being
less restrictive, can authorize some imperfections that
are then corrected by the in situ minimization protocol.
A total of 250 and 1000 iterations of in situ minimization
yielded strictly identical ROC curves, suggesting that
250 iterations were enough to maximize the detection
of “activity signal”. A tolerance of 0.5 Å for the am-
monium position slightly improved the AUCs but in any
case allows a dramatic reduction of the number of poses
to be scored without losing the important information.
Below 0.5 Å, the filter was too restrictive because all
poses of some known actives were discarded. Interest-
ingly, this value may be related to the positional
precision of about 0.45 Å (according to Cruickshank’s
formula reported in ref 56) that was reached with the
template (resolved at 2.2 Å, Rfree ) 0.227 42) we used to
build the homology model.

The best ROC curve over the tested combinations is
displayed in Figure 6a. This curve evolves parallel to
the ideal graph along the left side and even overlaps it
for low specificity values. The lowest value of LigScore2
is 4.91 (for the inactive compound (S)-CBPG 15, EC50
> 1 mM), and the highest is 6.95 for (S)-3,4-DCPG 10
(EC50 ) 8.8 µM). According to the correlation between
affinity and scores calculated for LigScore2, this range
corresponds to about 2 orders of magnitude in terms of

pKi. Its area under the curve reaches 0.9. This means
that the designed test is actually capable of giving a
higher score to a randomly selected active compound
than to a randomly selected inactive in 9 trials out of

Figure 5. ROC curves obtained with the ensemble docking approach using the PLP1-based docking function and plotted for
various scoring functions: (a) results without in situ minimization or ammonium displacement restriction (above) and the calculated
AUCs (table below); (b) same as for panel a but with 250 iterations of in situ minimization.

Figure 6. (a) ROC graph provided by LigScore2 (open
diamonds) with the optimized set of parameters reported in
the text. The random distribution is displayed as a bold
diagonal. (b) Bar chart reporting the AUC values obtained for
the 99 randomization trials (shown in gray). The reference
AUC corresponding to the correct assignment of activities is
displayed in black (AUC ) 0.9).
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10. Such a high value is often considered as “excellent”.
However, as stated above in the theoretical section,
further validation is needed.

Statistical Validation of the Selected Set. To
check if the ROC curve obtained with the optimized set
of parameters was due to chance or, on the contrary,
was reflecting a strong relationship between the struc-
tures (here described as a score after docking into a
protein model, LigScore2) and the pharmacological
activity, a statistical validation was performed. The 21
activities of the sample were scrambled 99 times; i.e.,
they were randomly redistributed over the 21 com-
pounds in 99 trials. The 99 ROC curves of the trials were
then plotted to calculate the 99 corresponding AUCs,
which are reported in Figure 6b. Since all trials have a
lower AUC than the reference curve (0.9), Fisher’s test
allows us to state that the reported vHTS method
reflects the SAR of the compounds with a statistical
significance of 99%.

Choice of a Selection Threshold. As our objective
was to discover new chemotypes as mGlu4R agonists,
a rather liberal approach privileging sensitivity over
specificity was chosen (corresponding to points in the
upper-right part of the validated graph). Besides its high
AUC, the shape of the obtained ROC curve is a clear
advantage when such a strategy is to be adopted
because it overlaps the ideal graph on a large section
of the upper-left corner, therefore allowing good specific-
ity values to be reached at the maximum sensitivity.
In fact, for a maximum sensitivity of 1, specificity can
be maximized at 0.73, corresponding to a LigScore2
threshold of 5.8 (refer to Figure 6a). In other words, with
a LigScore2 threshold set to 5.8, 100% of known actives
are selected (Se ) 1) and 73% of known inactives are
discarded. Misclassified (overestimated) compounds are
(S)-4C3HPG 21, (S)-4CH2Glu 11, and (2S,4S)-4MGlu
12, which highlight some imperfections of the computer
test in discarding some inactive molecules. Once the
models of (S)-4CH2Glu 11 and (2S,4S)-4MGlu 12 are
docked, it was observed that their glutamic substructure
overlaps almost perfectly with the L-glutamate 1 itself,
orienting their extra carbon in an empty space (data
not shown). Therefore, their interaction pattern is
analogous to the interaction pattern of endogenous
agonist. A similar observation can be made when
comparing (S)-4C3HPG 21 to the known agonist (S)-
3,4-DCPG 10.

Database Screening. Virtual Screening. The com-
puter test described above was then applied to data-
bases of compounds of unknown activities available from
different providers. Prior to the docking calculations,
two filters were applied to enrich the data set of
molecules before docking. A first filter was applied to
discard compounds with a molecular weight above 500
g/mol in order to reflect the rather small size of known
ligands and, consequently, the rather small size of the
four site models. A second filter was set to satisfy the
interaction pattern evoked above. All known agonists
exhibit a primary ammonium moiety that, according to
both X-ray studies (for subtype 1) and MD studies (for
other subtypes), strongly interacts with highly con-
served residues (as described above). Since there is
hardly any chemical group bioisosteric to -NH3

+ (i.e.,
three polar hydrogens and a positive charge worn by a

single atom) capable of satisfying the conserved interac-
tions, only molecules exhibiting an ionizable primary
ammonium were retained. This second filter dramati-
cally reduced the number of compounds to be docked
(see above). This simply characterizes the lack of
primary amines in the studies’ databases and may be
explained by the fact that primary amines are often
(wrongly) considered as chemical reagents instead of
valuable HTS compounds. Hence, from originally ca.
720 000 molecules, only 1069 molecules were retained
for docking. Setting the docking-scoring parameters at
their optimized value as described above, the 1069
molecules were docked in the ensemble of receptor
conformations. Compounds that exhibited a LigScore2
above 5.8 were visually analyzed in the context of the
LBM. Those that formed several H-bonds (apart from
their ammonium moiety) or interacted with hydrophobic
regions of the binding pocket were selected for purchase.
We also analyzed the top 10% of molecules that were
scored below 5.8 in the same way and short-listed
compounds with novel (“non-glutamate-like”) structures.
Among the 41 selected compounds, 38 were available
from the vendors’ stock and purchased for in vitro
assays.

Functional Screening. Agonist activity of the 38
selected compounds was tested on HEK 293 cells
expressing the mGlu4 receptor together with the chi-
meric Gqi9 protein. The presence of this G-protein
allows this Gi-coupled receptor to activate phospholipase
C and therefore to stimulate inositol phosphate forma-
tion, rather than inhibiting cAMP formation. Compared
to basal activity, six compounds significantly increased
IP formation when tested at 100 µM (refer to Figure
7a). This corresponds to a hit rate on subtype 4 of ca.
16% for this HTS campaign, improving to several orders
of magnitude hit rates usually observed by random
screening (less than 0.01% or so according to ref 57).
For example, Doman et al. have reported an HTS
campaign with a hit rate of 0.02% while investigating
protein tyrosine phosphatase-1B, compared to 35%
achieved by a prior virtual screening-based selection.58

These numbers, however, are by no mean indicative of
the very quality of a given virtual screening campaign
because hit rates depend, for a start, on the screened

Figure 7. Pharmacology of the 38 selected compounds at 100
µM: (a) agonist activity against mGlu4R; (b) selectivity
between subtypes of group III mGluRs. Compounds with
agonist activity are marked with a gray box.
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database itself. Indeed, current drug design paradigm
hypothesizes that, upon lead optimization, for instance,
chemical derivatives of a given lead structure would
constitute a library with a higher probability of activity
than commercial databases with diverse compound
structures. Hit rates may even depend on the biological
target being investigated. For instance, Luu et al. have
recently reported59 that the gold fish odorant receptor
OR5.24, which happens to be in the same GPCR family
as mGluRs, could be accurately modeled by comparative
modeling with the LBD of mGlu1R. Despite these
similarities, OR5.24 is activated by the 20 proteinogenic
amino acids at a 100 µM concentration60 whereas
mGluRs specifically recognize L-glutamate only (data
not shown). This simple observation shows that the
same database screened on homologous receptors can
yield radically different hit rates.

When tested on other group III subtypes (i.e., mGlu-
(6-8)R), a rather poor selectivity was observed among
the six hits (Figure 7b). The most potent compound at
100 µM (compound 31, Figure 7a) is capable of activat-
ing all group III subtypes. Among the five other posi-
tives, only one (compound 34) was selective for subtype
4. More surprising, when tested on other group III
subtypes, one negative compound on mGlu4R was
shown to activate mGlu7R. These observations regard-
ing selectivity suggest those even virtual screening
workflows relying on a docking approach are not specific
enough to induce receptor selectivity in the selection
process. Having said this, 6 out of 7 hits have an agonist
activity on subtype 4, which is acceptable.

A Posteriori Analysis Regarding the Calculated
log P Values. After the pioneering work of Lipinski et
al. suggesting the use of computational filter to improve
solubility and permeability of screened compounds,61 it
is now common to include criteria such as molecular
weight (MW) or hydrophobicity (quantified by the n-
octanol/water partition coefficient, log P) in virtual
screening workflows in order to favor druglike com-
pounds during the selection process (see refs 58 and 62
as examples). Here, only molecules with a MW below
500 g/mol were retained but not so much to abide by
Lipinski’s rule than to discard large molecules that
obviously cannot fit in the small binding site of our
model. To evaluate the importance of filtering according
to the predicted log P (AlogP98) in the case of mGlu4R,
a straightforward a posteriori study was carried out
(Table 4). First of all, it appears that when considering
the sample used for the ROC curve analysis, AlogP98
does not discriminate the active population from the
inactives. This implies that the ROC curve profiles
would not be modified if a supplementary filter focused
on log P values was implemented. When comparing the
results obtained with the database screened, it is

noteworthy that commercially available compounds
were rather more hydrophobic than the sample of
molecules of known activities (1.16 on average compared
to -0.89). Since all known agonists exhibit a negative
AlogP98, we could have decided to discard any molecule
with positive AlogP98. As a consequence, only 211
molecules would have been docked, out of which 11
compounds would have been selected for HTS. Among
these 11 compounds, 4 exhibit an agonist activity on
mGlu4R corresponding to an improved hit rate of 36%.
These results tend to back up the use of log P filters
because they can yield better hit rates with less effort.
However, this is not in the line of the liberal strategy
adopted here for mGlu4R agonists. Indeed, two active
compounds, that is, one-third of the total hits, would
never have been found.

Conclusion

Despite the plethora of scientific fields that rely on
the ROC curve approach for important decision-making,
the drug discovery area is late in adopting it. This is
the case even though making decisions on whether to
continue to invest in the evaluation of a molecule or to
discard another is considered as a central issue in many
steps of drug discovery and development.63 Even the
rare papers that report ROC curves in this field un-
derutilize them and base their conclusions on other
methods such as enrichment curves. And yet, the ROC
curve method features several key advantages compared
to other existing methods.7 First, this graphical method
provides a comprehensive representation of the pure
accuracy of a given vHTS workflow (“computer test”).
Indeed, only the entire spectrum of sensitivity/specificity
pairs provides a complete picture of test accuracy
reporting the dual aspect of any test, namely, the ability
to select active compounds and discard inactive ones.
Second, the ROC curve method is strictly independent
of the rate of active molecules in the sample set,
allowing inclusion of any information related to both
activity and inactivity. Third, ROC curves allow a direct
visual comparison between tests on a common graph.7
Their relative simplicity facilitates transdisciplinary
communication among research groups and results in
publications that permit comparison to others (provided
that the used samples represent the same SAR data).
Several vHTS approaches can even be compared on the
same graph, facilitating the choice of method that suits
the objectives the best (e.g., scaffold hoping or lead
optimization). The absence of theoretical background to
the ROC curve method applied to drug discovery may
explain the observed reluctance in using it. Filling this
lack was the first objective of this paper. The second
objective of this paper was to introduce a real prospec-
tive application of the ROC curve approach. The chosen
system (agonists of mGlu4 receptor) was rather tricky
owing to the poor pharmacological data availability.
However, despite the small size of the derived sample
for mGlu4R, the ROC method still managed to extract
a clear activity signal (area under the curve of 0.9) and
subsequently to find 6 agonists among 38 selected
compounds out a database of more than 720 000 mol-
ecules.

Table 4. Statistical Analysis of Calculated log P Values
(AlogP98)

total
number min max av

standard
deviation

sample actives 10 -1.7 0 -1.06 0.52
sample inactives 11 -2 0 -0.74 0.60
total sample 21 -2 0 -0.89 0.57
database 1069 -7 7.6 1.16 1.53
selection 38 -2.8 4 0.36 1.31
hits 6 -1.7 4 -0.95 1.84
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Experimental Section
Computer Test Elaboration. To use the ROC curve

approach, the computer test was developed by following the
guidelines described in the theoretical section.

1. Choice of Activity Cutoff. The activity cutoff was set
to 100 µM, corresponding to the concentration at which
candidates are tested in our HTS assay.

2. Sample Selection and Building. Twenty-one molecules
representing the pharmacological profile of mGlu4R were
selected and distributed into two classes: “actives” having an
EC50 below 100 µM and “inactives” above (see Figure 3 for
structures and activity classes). All molecules have a common
substructure: a primary ammonium.

A comparative model of mGlu4R LBM was refined by
molecular dynamics in the presence of four structurally diverse
mGlu4 receptor agonists (L-AP4 2, ACPT-I 6, L-Glu 1, and
(S)-PPG 9) according to the method described by Bertrand et
al.48 Each molecule in the sample was manually built with the
sketcher of the InsightII software package (version 2000.1,
Accelrys Inc., San Diego, CA) and protonated at physiological
pH.

3. High-Throughput Docking-Scoring. The resulting
molecules were then processed into a high-throughput docking-
scoring workflow. Each of them was docked with LigandFit
(version 4.9, Accelrys Inc.) in each of the four models using
either PLP1 or DREIDING to derive the docking function
(DockScore). Twenty poses for each complex were saved and
minimized (steepest descent) in the context of the protein (held
rigid) with the DREIDING force field.51 Results were then
processed in order to remove all the poses orienting the ligands’
ammonium fragment further than a certain distance (Dmax)
away from the ammonium moiety of the reference molecule.
The remaining poses were finally scored with the entire panel
of scoring functions available within the Cerius2 software
package (version 4.9, Accelrys Inc.): LigScore1,50 LigScore2
(both using the DREIDING force field51), PLP1,52 PLP2,64

Jain,65 Ludi2,66 and PMF.67 Poses from the four conformations
of the receptor were pooled, and for a given scoring function,
only the highest scoring pose was retained to plot the corre-
sponding ROC curve.

4. ROC Curves Plotting. For a given combination of
parameters, the ROC curves corresponding to each of the above
scoring functions were plotted. To do so, for a given scoring
function, the 21 score values of the sample were used as
selection thresholds. By this approach, the number of calcula-
tions and the number of approximations due to binning effects
are reduced to their minima. For each threshold, selected and
discarded compounds are counted for both actives and inac-
tives (see the confusion matrix on Figure 1b). The pairs of
sensitivity and specificity deduced from the previous count
were then used to plot the ROC curves. Finally, the AUCs are
calculated as the sum of the areas of the rectangles below the
ROC curve: AUC ) ∑i[(Sei+1)(Spi+1 - Spi)/2].

Database Virtual Screening. Databases Preparation
and Filtering. Commercial databases were prepared as
follows. First, molecules were converted into 3D coordinates
with CORINA (available in TSAR, version 3.3, Accelrys Inc.)
using the option to strip away counterions and solvent
molecules. The obtained SD file was processed by the set-
_charge executable available from Accelrys Inc. to set formal
charges according to physiological pH for most known ionizable
groups (aliphatic amines, amidines, guanidines, carboxylic
acids, etc.). The two filters (MW < 500 g/mol and primary
ammonium substructure) were implemented by means of
Catalyst queries (Catalyst, version 4.9, Accelrys Inc.). The
remaining compounds were exported in SD file format and
concatenated with the 21 compounds of known activities
(internal references) prior to docking.

High-Throughput Docking, Postprocessing, and Scor-
ing. Remaining molecules followed the vHTS workflow de-
signed with the ROC curve method. Hence, they were docked
in the four conformations of the receptor’s LMB with LigandFit
using PLP1 as a docking function. After docking, poses were
refined by in situ minimization (250 steps). The resulting poses

were filtered according to the displacement of their ammonium
(maximum 0.5 Å) and scored with LigScore2 (using the
DREIDING force field). Only the best pose obtained on the
ensemble of four conformations was retained for classification.

Compound Selection. All compounds exhibiting a Lig-
Score2 above 5.8 were visually inspected as well as the top
10% of compounds displaying a lower LigScore2. Novel struc-
tures were selected according to their interaction pattern with
the LBM model and purchased when available.

Functional Screening. Agonist activity of the 38 selected
compounds was tested on HEK293 cells transiently transfected
with the rat mGlu4 expressing plasmid pRKG4 and the
chimeric G-protein Gqi9 by electroporation, as previously
described.68 Cells were plated in 96-well culture plates and
labeled overnight with [3H]myoinositol. The day after, cells
were washed three times with Krebs buffer, incubated for 10
min with LiCl 5 mM, and then incubated for 30 min in the
absence (basal) or in the presence of the indicated compounds
at 100 µM. The total amount of [3H]phosphatidylinositol
accumulated in the cells was determined after Dowex purifica-
tion as previously described.69 All experiments were carried
out seven times. Compounds were considered as hits if the IP
formation was significantly higher than the one for basal
activity in at least 3 experiments out of 7.

The log P Calculations. Estimated n-octanol/water parti-
tion coefficient (log P) were calculated within Cerius2 (version
4.9, Accelrys Inc.) according to Ghose and Crippen’s atomic
approach70 (AlogP98).
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(41) Pin, J.-P.; Galvez, T.; Prézeau, L. Evolution, structure, and
activation mechanism of family 3/C G-protein-coupled receptors.
Pharmacol. Ther. 2003, 98, 325-354.

(42) Kunishima, N.; Shimada, Y.; Tsuji, Y.; Sato, T.; Yamamoto, M.;
et al. Structural basis of glutamate recognition by a dimeric
metabotropic glutamate receptor. Nature 2000, 407, 971.

(43) O’Hara, P. J.; Sheppard, P. O.; Thogersen, H.; Venezia, D.;
Haldeman, B.; et al. The ligand-binding domain in metabotropic
glutamate receptors is related to bacterial periplasmic binding
proteins. Neuron 1993, 11, 41-52.

(44) Bessis, A.-S.; Rondard, P.; Gaven, F.; Brabet, I.; Triballeau, N.;
et al. Closure of the Venus Flytrap module of mGlu8 receptor
and the activation process: insights from mutations converting
antagonists into agonists. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 11097-11102.

(45) Cartmell, J.; Schoepp, D. D. Regulation of neurotransmitter
release by metabotropic glutamate receptors. J. Neurochem.
2000, 75, 889-907.

(46) Schoepp, D. D.; Jane, D. E.; Monn, J. A. Pharmacological agents
acting at subtypes of metabotropic glutamate receptors. Neu-
ropharmacology 1999, 38, 1431-1476.

(47) Teague, S. J. Implications of protein flexibility for drug discovery.
Nat. Rev. Drug Discovery 2003, 2, 527-541.

(48) Bertrand, H.-O.; Bessis, A.-S.; Pin, J.-P.; Acher, F. C. Common
and selective molecular determinants involved in metabotopic
glutamate receptor agonist activity. J. Med. Chem. 2002, 45,
3171-3183.

(49) Hampson, D. R.; Huang, X.-P.; Pekhletski, R.; Peltekova, V.;
Hornby, G.; et al. Probing the ligand-binding domain of the
mGluR4 subtype of metabotropic glutamate receptor. J. Biol.
Chem. 1999, 274, 33488-33495.

(50) Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M.
LigandFit: a novel method for the shape-directed rapid docking
of ligands to protein active sites. J. Mol. Graphics Modell. 2003,
21, 289-307.

(51) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. G., III. DREIDING:
A generic force field for molecular simulation. J. Phys. Chem.
1990, 94, 8897-8909.

(52) Gehlhaar, D. K.; Verkhivker, G. M.; Rejto, P. A.; Sherman, C.
J.; Fogel, D. B.; et al. Molecular recognition of inhibitor AG-
1343 by HIV-1 protease: conformationally flexible docking by
evolutionary programming. Chem. Biol. 1995, 2, 317-324.

(53) Mangoni, A.; Roccatano, D.; DiNola, A. Docking of flexible ligands
to flexible receptors in solutions by molecular dynamics simila-
tion. Proteins 1999, 35, 153-162.
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